AlgaeCeuticals

Development of microalgae-based natural UV Sunscreens and Proteins as cosmeceuticals and nutraceuticals

Microalgae cultures in laboratory conditions Algoe@euticols

DR. EVANGELIA STAVRIDOU, POSTDOCTORAL RESEARCHER

This project has received funding from the [European Union's Horizon 2020 research and innovation programme] under the [Marie Skłodowska-Curie grant agreement No 778263]

AlgaeCeuticals – the project

"Microalgae represent a largely untapped reservoir of novel and valuable bioactive compounds".

"The biological and chemical diversity of the microalgae, has great potential for industrial development as pharmaceuticals, cosmetics and nutritional supplements".

Microalgae

Microalgae are microscopic algae found in aquatic habitats that have the ability to photosynthesize

For an entirely autotrophic alga the following are essential:

light + CO_2 + H_2O + nutrients + trace elements

Photosynthesis

synthesizing all the biochemical compounds necessary for growth

Auxotrophy: Only a minority of alga seem, however, to be entirely autotrophic; many are unable to synthesize certain biochemical compounds (certain vitamins, for example) and will require these to be present in the medium

Microalgae

Microalgae are found everywhere!

Can be extracted from the environment through a process known as culture isolation/"fishing" the strain:

• separating the strain from the surrounding organisms

placing the strain into a suitable medium and environment to promote growth

The aim is to obtain an **axenic** (no other microorganisms) culture or possibly a **monoalgal** culture

Isolation process is complex and involves identifying the strain

Cultivating microalgae

Culture conditions should resemble the alga's natural environment

Liquid cultures

Flasks

Plates

Photo Bioreactor

Cultivating microalgae

Cultivating microalgae

There are 2 kinds of cultures

In continuous cultures

growth occurs according to a sigmoid curve

A volume of fresh culture medium is added automatically at a rate proportional to the growth rate of the alga, while an equal volume of culture is removed

In limited volume cultures (batch)

Subculturing, i.e. transferring a small volume of existing culture to a large volume of fresh culture medium at regular intervals

Culture components

In their natural habitats microalgae obtain all the required nutrients, minerals and vitamins from the water in which they live!

! To grow them in the lab we need growth media !

There are 3 distinct components:

 \checkmark The culture medium (liquid or solid)

sources of: nitrogen (in the from of nitrate, nitrite and ammonia), phosphorus, vitamins and trace metals along with dissolved inorganic C

- \checkmark The algal cells
- \checkmark Air to allow exchange of carbon dioxide between medium and atmosphere

Physical parameters

Temperature

Ideally as close as possible to the temperature at which the organisms were collected

Light

- Natural light (sufficient to maintain cultures in the laboratory)
- Cultures should never be exposed to direct sunlight → may cause photopigment damage
- Artificial lighting by fluorescent bulbs for culture maintenance and experimental purposes

Many microalgal species do not grow well under constant illumination, and hence a light/dark (LD) cycle is used (maximum 16:8 LD, usually 14:10 or 12:12)

Wahidin, S., Idris, A., & Shaleh, S. R. M. (2013). *The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresource Technology, 129, 7– 11.* doi:10.1016/j.biortech.2012.11.032

Physical parameters

Gentle Mixing

- when cells must be kept in suspension in order to grow
- in concentrated cultures to prevent nutrient limitation effects due to stacking of cells and to increase gas diffusion
- bubbling with air (may damage cells)
- gentle manual swirling

Most cultures do well without mixing, particularly when not too concentrated, but when possible gentle manual swirling (once each day) is recommended!

Production chain of microalgae biomass

Microalgae are micro-factories

The accumulation of biomass requires sunlight, water, nutrients and CO₂

Modified image from Wang, J., Yin, Y. Fermentative hydrogen production using pretreated microalgal biomass as feedstock. *Microb Cell Fact* **17**, 22 (2018) doi:10.1186/s12934-018-0871-5

METHODS

- 1. Preparation of media (for liquid and solid cultures)
- 2. Autoclave all conical flasks and equipment to be used
- 3. Work under sterile conditions in a Laminar flow hood

Microalgae cultures can be preserved as follows:

METHODS

Concentrated culture

Liquid to Liquid

Culture after 2 weeks

Diluted start culture in freshly prepared medium

1ª

Liquid to Solid

Take 100 μL of a dense culture and plate it with a drigalski spatula after sterilizing it with pure EtOH and flame

Solid to Solid

Sterile Eppendorf tubes \rightarrow add 200 µL of the liquid medium \rightarrow use the loop to take a few colonies \rightarrow dissolve them in the Effendorf tube \rightarrow use 100 µL of that culture \rightarrow use a drigalski spatula to plate

